skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Jennifer Follstad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Processes driving nutrient retention in stormwater green infrastructure (SGI) are not well quantified in water-limited biomes. We examined the role of plant diversity and physiochemistry as drivers of microbial community physiology and soil N dynamics post precipitation pulses in a semi-arid region experiencing drought. We conducted our study in bioswales receiving experimental water additions and a montane meadow intercepting natural rainfall. Pulses of water generally elevated soil moisture and pH, stimulated ecoenzyme activity (EEA), and increased the concentration of organic matter, proteins, and N pools in both bioswale and meadow soils. Microbial community growth was static, and N assimilation into biomass was limited across pulse events. Unvegetated plots had greater soil moisture than vegetated plots at the bioswale site, yet we detected no clear effect of plant diversity on microbial C:N ratios, EEAs, organic matter content, and N pools. Differences in soil N concentrations in bioswales and the meadow were most directly correlated to changes in organic matter content mediated by ecoenzyme expression and the balance of C, N, and P resources available to microbial communities. Our results add to growing evidence that SGI ecological function is largely comparable to neighboring natural vegetated systems, particularly when soil media and water availability are similar. 
    more » « less